Skip to main content

Advertisement

Log in

Expression profiles of congenital renal dysplasia reveal new insights into renal development and disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Congenital renal dysplasia (RD) is a major cause of renal failure in the pediatric population. Although molecular and genetic aspects of RD have been studied in animal models, limited studies have been done in human RD primarily due to lack of available material. To identify novel genes that are associated with RD and normal kidney development, we performed microarray analysis on total RNA extracted from age-matched fetal kidneys of normal and RD patients. In midgestational RD kidneys, we found 180 upregulated and 104 downregulated transcripts compared with normal kidneys. Among the increased transcripts in the dysplastic kidneys were matrix-degrading enzymes (MMP7, MMP19, TIMP1), inflammation- and immunity-related genes, and growth factors. Expression of genes known to be essential for normal kidney development, such as WT1, BMP7, renin, angiotensin receptor 2 (AGTR2), SAL-like 1 (SALL1) and glypican 3 (GPC3), were decreased in dysplastic kidneys. Expression of selected gene products (BMP7, renin, and MMP7) was further confirmed in parallel sections and in several normal and human dysplastic kidneys, supporting the role of these genes as putative RD biomarkers. These results are among the first to reveal disrupted expression profiles during gestation in human RD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ichikawa I, Kuwayama F, Pope JC 4th, Stephens FD, Miyazaki Y (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898

    Article  PubMed  Google Scholar 

  2. Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A (2003) Chronic renal insufficiency in children: the 2001 Annual Report of the NAPRTCS. Pediatr Nephrol 18:796–804

    Article  PubMed  Google Scholar 

  3. McPherson E, Carey J, Kramer A, Hall JG, Pauli RM, Schimke RN, Tasin MH (1987) Dominantly inherited renal adysplasia. Am J Med Genet 26:863–872

    Article  CAS  PubMed  Google Scholar 

  4. Murugasu B, Cole BR, Hawkins EP, Blanton SH, Conley SB, Portman RJ (1991) Familial renal adysplasia. Am J Kidney Dis 18:490–494

    Article  CAS  PubMed  Google Scholar 

  5. Moerman P, Fryns JP, Sastrowijoto SH, Vandenberghe K, Lauweryns JM (1994) Hereditary renal adysplasia: new observations and hypotheses. Pediatr Pathol 14:405–410

    Article  CAS  PubMed  Google Scholar 

  6. Squiers EC, Morden RS, Bernstein J (1987) Renal multicystic dysplasia: an occasional manifestation of the hereditary renal adysplasia syndrome. Am J Med Genet Suppl 3:279–284

    Article  CAS  PubMed  Google Scholar 

  7. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83

    Article  CAS  PubMed  Google Scholar 

  8. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12:241–247

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  11. Lipschutz JH (1998) Molecular development of the kidney: a review of the results of gene disruption studies. Am J Kidney Dis 31:383–397

    Article  CAS  PubMed  Google Scholar 

  12. Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liapis H (2003) Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 93:e87–e91

    Article  CAS  PubMed  Google Scholar 

  14. Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007

    Article  PubMed  Google Scholar 

  15. Liapis H, Doshi RH, Watson MA, Liapis A, Steinhardt GF (2002) Reduced renin expression and altered gene transcript profiles in multicystic dysplastic kidneys. J Urol 168:1816–1820

    Article  CAS  PubMed  Google Scholar 

  16. Wigglesworth JS, Singer DB (1991) In: Textbook of fetal and perinatal pathology. Blackwell Scientific, p 40

  17. Tiniakos DG, Yu H, Liapis H (1998) Osteopontin expression in ovarian carcinomas and tumors of low malignant potential (LMP). Hum Pathol 29:1250–1254

    Article  CAS  PubMed  Google Scholar 

  18. Jain S, Watson MA, DeBenedetti MK, Hiraki Y, Moley JF, Milbrandt J (2004) Expression profiles provide insights into early malignant potential and skeletal abnormalities in multiple endocrine neoplasia type 2B syndrome tumors. Cancer Res 64:3907–3913

    Article  CAS  PubMed  Google Scholar 

  19. Surendran K, Simon TC, Liapis H, McGuire JK (2004) Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int 65:2212–2222

    Article  CAS  PubMed  Google Scholar 

  20. Piscione TD, Rosenblum ND (2002) The molecular control of renal branching morphogenesis: current knowledge and emerging insights. Differentiation 70:227–246

    Article  CAS  PubMed  Google Scholar 

  21. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  CAS  PubMed  Google Scholar 

  22. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA (2003) Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol 13:1625–1629

    Article  CAS  PubMed  Google Scholar 

  24. Woolf AS, Winyard PJ (2002) Molecular mechanisms of human embryogenesis: developmental pathogenesis of renal tract malformations. Pediatr Dev Pathol 5:108–129

    Article  CAS  PubMed  Google Scholar 

  25. Sariola H, Sainio K (1998) Cell lineages in the embryonic kidney: their inductive interactions and signalling molecules. Biochem Cell Biol 76:1009–1016

    Article  CAS  PubMed  Google Scholar 

  26. Hruska KA, DePetris L, Li T, Wang S, Geurs T, Strebeck F, Chen Q, Liapis H (2006) The Prospect of a novel therapeutic, BMP7, in diabetic nephropathy. In: Cortes P, Mogensen CE (eds) Contemporary diabetes: the diabetic kidney. Humana Press

  27. Li M, Shuman C, Fei YL, Cutiongco E, Bender HA, Stevens C, Wilkins-Haug L, Day-Salvatore D, Yong SL, Geraghty MT, Squire J, Weksberg R (2001) GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson-Golabi-Behmel syndrome. Am J Med Genet 102:161–168

    Article  CAS  PubMed  Google Scholar 

  28. McGuire JK, Liapis H, Suarez A, Hruska K (2004) Matrilysin (MMP7) is expressed in Renal Dysplasia and inhibits Bone Morphogenetic Protein 7 (BMP7) induced tubulogenesis. J Am Soc Nephrol 15:818A

    Article  Google Scholar 

  29. De Cat B, Muyldermans SY, Coomans C, Degeest G, Vanderschueren B, Creemers J, Biemar F, Peers B, David G (2003) Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 163:625–635

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reddi V, Zaglul A, Pentz ES, Gomez RA (1998) Renin-expressing cells are associated with branching of the developing kidney vasculature. J Am Soc Nephrol 9:63–71

    CAS  PubMed  Google Scholar 

  31. Wu K, Setty S, Mauer SM, Killen P, Nagase H, Michael AF, Tsilibary EC (1997) Altered kidney matrix gene expression in early stages of experimental diabetes. Acta Anat (Basel) 158:155–165

    Article  CAS  Google Scholar 

  32. Eddy AA (1996) Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int 50:1139–1149

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura T, Ebihara I, Osada S, Takahashi T, Yamamoto M, Tomino Y, Koide H (1993) Gene expression of metalloproteinases and their inhibitor in renal tissue of New Zealand black/white F1 mice. Clin Sci (Lond) 85:295–301

    Article  CAS  Google Scholar 

  34. Sharma AK, Mauer SM, Kim Y, Michael AF (1995) Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J Lab Clin Med 125:754–761

    CAS  PubMed  Google Scholar 

  35. Engelmyer E, van Goor H, Edwards DR, Diamond JR (1995) Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase-1,-2, and -3 in experimental hydronephrosis. J Am Soc Nephrol 5:1675–1683

    CAS  PubMed  Google Scholar 

  36. Schaefer L, Han X, Gretz N, Hafner C, Meier K, Matzkies F, Schaefer RM (1996) Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat. Kidney Int 49:75–81

    Article  CAS  PubMed  Google Scholar 

  37. Jones CL, Buch S, Post M, McCulloch L, Liu E, Eddy AA (1992) Renal extracellular matrix accumulation in acute puromycin aminonucleoside nephrosis in rats. Am J Pathol 141:1381–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12:736–748

    CAS  PubMed  Google Scholar 

  39. Henger A, Kretzler M, Doran P, Bonrouhi M, Schmid H, Kiss E, Cohen CD, Madden S, Porubsky S, Grone EF, Schlondorff D, Nelson PJ, Grone HJ (2004) Gene expression fingerprints in human tubulointerstitial inflammation and fibrosis as prognostic markers of disease progression. Kidney Int 65:904–917

    Article  CAS  PubMed  Google Scholar 

  40. Liapis H, Winyard JP (2006) Heptinstall’s pathology of the kidney, cystic diseases of the kidney and developmental defects, chapter 22, 6th edn. Lippincott-Raven, pp 1287–1290

Download references

Acknowledgments

We thank Drs. George Steinhardt at Urologic Consultants, Grand Rapids, MI, USA, and Dr. Edith Schmidt at Sunrise Children’s Hospital, Las Vegas, ND, USA, for their kind contribution of pathologic samples for this study, and Mark Watson at the GeneChip core facility at Washington University St. Louis, for help with the arrays. The study was in part supported by a grant by the Midwest Stone Institute to H. Liapis (# 93267/03), and by NIH-NICHD to S. Jain (HD047396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Liapis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Demographic and pathologic data of kidneys used for microarray analysis (DOC 38 kb)

Supplementary Table 2

Rank ordered list of genes identified by SAM that are upregulated in midgestational normal fetal kidneys compared to late gestation (32–34 week) normal fetal kidneys (DOC 23 kb)

Supplementary Table 3

Rank ordered list of genes identified by SAM that are upregulated in late gestation normal (32–34 week) fetal kidneys compared to mid gestation normal fetal kidneys (DOC 33 kb)

Supplementary Figure 1

Validation of BMP7, MMP7 and Renin expression in normal and dysplastic kidneys in additional samples that were not used in microarray analysis (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Suarez, A.A., McGuire, J. et al. Expression profiles of congenital renal dysplasia reveal new insights into renal development and disease. Pediatr Nephrol 22, 962–974 (2007). https://doi.org/10.1007/s00467-007-0466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0466-6

Keywords

Navigation